728x90
2. pn Admittance - Forward Bias

2. pn Admittance - Forward Bias

1. Forward-Bias Admittance

  • C=CJ+CDC=C_J+C_D : Depletion Capacitance + Diffusion Capacitance
    • CJC_J : Depletion Width가 감소하면 CJC_J는 증가

  • Forward Bias
    • Forward Bias가 인가되면 Minority Carrier 증가 : Minority Carrier의 응답은 Majority만큼 빠르지 않기 때문에, 전압 인가에 따른 위상차 존재
    • Forward Bias 인가 시 Minority Carrier에 의한 커패시턴스 성분 생성 (Diffusion Capacitance)
    • 위상차 성분 일부는 Conductance에 영향
    • i(t)=(G+wCout)v0coswtwCinv0sinwti(t)=(G+wC^{out})v_0coswt-wC^{in}v_0sinwt

  • p+np^+n (p농도 > n농도) 접합의 경우
    • 고주파 Bias 인가 시 도핑 농도가 Bias를 중심으로 진동하는(위상차가 나타나는) 형태로 나타나게 됨

2. Admittance Relationships

  • small signal에 의한 Diffusion Equation
    • Δpn(x,t)t=DP2Δpn(x,t)x2Δpn(x,t)τp\frac{\partial\Delta p_n(x,t)}{\partial t}=D_P\frac{\partial^2\Delta p_n(x,t)}{\partial x^2}-\frac{\Delta p_n(x,t)}{\tau_p}
  • Δpn(x,t)=Δpn(x)+pn~(x,w)ejwt\Delta p_n(x,t)=\overline{\Delta p_n(x)}+\tilde{p_n}(x,w)e^{jwt} 가정
    • Δpn(x)\overline{\Delta p_n(x)} : 도핑 농도 Bias
    • pn~(x,w)ejwt\tilde{p_n}(x,w)e^{jwt} : AC 전압에 의한 진폭

  • 가정한 해를 대입
    • Δpn(x,t)t=jwpn~(x,w)ejwt\frac{\partial\Delta p_n(x,t)}{\partial t}=jw\tilde{p_n}(x,w)e^{jwt}
      =DPd2Δpn(x)dx2+DPd2pn~(x,w)ejwtdx2Δpn(x)τppn~(x,w)ejwtτp=D_P\frac{d^2\overline{\Delta p_n(x)}}{d x^2}+D_P\frac{d^2 \tilde{p_n}(x,w)e^{jwt}}{d x^2}-\frac{\overline{\Delta p_n(x)}}{\tau_p}-\frac{\tilde{p_n}(x,w)e^{jwt}}{\tau_p}

    • DC : DPd2Δpn(x)dx2Δpn(x)τp=0D_P\frac{d^2\overline{\Delta p_n(x)}}{d x^2}-\frac{\overline{\Delta p_n(x)}}{\tau_p}=0

    • AC : jwpn~(x,w)=DPd2pn~(x,w)dx2pn~(x,w)τpjw\tilde{p_n}(x,w) = D_P\frac{d^2 \tilde{p_n}(x,w)}{d x^2}-\frac{\tilde{p_n}(x,w)}{\tau_p}
      DPd2pn~(x,w)dx2(jw+1τp)pn~(x,w)=0\rarr D_P\frac{d^2 \tilde{p_n}(x,w)}{d x^2}-(jw+\frac{1}{\tau_p})\tilde{p_n}(x,w)=0

      • DPd2pn~(x,w)dx2pn~(x,w)τp/(1+jwτp)D_P\frac{d^2 \tilde{p_n}(x,w)}{d x^2}-\frac{\tilde{p_n}(x,w)}{\tau_p/(1+jw\tau_p)}

  • Boundary Condition
    • Δpn(x=)=0\Delta p_n(x=\infty)=0
    • Δpn(x=xn)\Delta p_n(x=x_n) : Depletion Edge
      =pn0[e(VA+va)/VT1]pn0[eVA/VT(1+vaVT)1]=p_{n0}[e^{(V_A+v_a)/V_T}-1]\simeq p_{n0}[e^{V_A/V_T}(1+\frac{v_a}{V_T})-1]
      =Δpn(x=xn)+pn~(x=xn,w)=\overline{\Delta p_n}(x=x_n)+\tilde{p_n}(x=x_n,w)
    • Δpn(x=xn)=pn0[eVA/VT1]ni2ND[eVA/VT1]\overline{\Delta p_n}(x=x_n)=p_{n0}[e^{V_A/V_T}-1]\simeq\frac{n_i^2}{N_D}[e^{V_A/V_T}-1]
    • pn~(x=xn,w)ni2NDeVA/VTva(w)VT\tilde{p_n}(x=x_n,w)\simeq\frac{n_i^2}{N_D}e^{V_A/V_T}\frac{v_a(w)}{V_T}

  • Solution : Diffusion Current
    • DC : Δpn(x)=pn0[eVA/VT1]ex/(DPτP)\overline{\Delta p_n}(x)=p_{n0}[e^{V_A/V_T}-1]e^{-x/\sqrt{(D_P\tau_P)}}
      • Idiff=qADPLPpn0[eVA/VT1]I_{diff}=\frac{qAD_P}{L_P}p_{n0}[e^{V_A/V_T}-1]
        =qADPτPpn0[eVA/VT1]=I0[eVA/VT1]=qA\sqrt{\frac{D_P}{\tau_P}}p_{n0}[e^{V_A/V_T}-1]=I_0[e^{V_A/V_T}-1]
    • AC : pn~(x=xn,w)=pn0eVA/VTva(w)VTex/DPτP/(1+jwτp)\tilde{p_n}(x=x_n,w)=p_{n0}e^{V_A/V_T}\frac{v_a(w)}{V_T}e^{-x/\sqrt{D_P\tau_P/(1+jw\tau_p)}}
      • Idiff(w)=qADP(1+jwτP)τPpn0eVA/VT[Va(w)/VT]I_{diff}(w)=qA\sqrt{\frac{D_P(1+jw\tau_P)}{\tau_P}}p_{n0}e^{V_A/V_T}[V_a(w)/V_T]
        =I01+jwτpeVA/VTVA(w)VT=I_0\sqrt{1+jw\tau_p}e^{V_A/V_T}\frac{V_A(w)}{V_T}
        =G01+jwτpVA(w)=G_0\sqrt{1+jw\tau_p}V_A(w)
      • G0=I0VTeVA/VTG_0=\frac{I_0}{V_T}e^{V_A/V_T}

3. Forward-Bias Diffusion Admittance

  • Small-signal Conducance : YD=G01+jwτpY_D=G_0\sqrt{1+jw\tau_p}
    • 1+jwτp=x+jy\sqrt{1+jw\tau_p}=x+jy일 때,
      x2y2=1, 2xy=wτpx^2-y^2=1,\ 2xy=w\tau_p
    • x=[1+1+w2τp22]1/2, y=[1+w2τp212]1/2x=[\frac{1+\sqrt{1+w^2\tau_p^2}}{2}]^{1/2},\ y=[\frac{\sqrt{1+w^2\tau_p^2}-1}{2}]^{1/2}
  • Diffusion Admittance : YD=GD+jwCDY_D=G_D+jwC_D
    • GD=G0[1+1+w2τp22]1/2=G02[1+1+w2τp2]1/2G_D=G_0[\frac{1+\sqrt{1+w^2\tau_p^2}}{2}]^{1/2}=\frac{G_0}{\sqrt{2}}[1+\sqrt{1+w^2\tau_p^2}]^{1/2}
    • CD=C0w[w2τp212]1/2=G02w[1+w2τp21]1/2C_D=\frac{C_0}{w}[\frac{\sqrt{w^2\tau_p^2-1}}{2}]^{1/2}=\frac{G_0}{\sqrt{2}w}[\sqrt{1+w^2\tau_p^2}-1]^{1/2}

  • 주파수가 일정 이하 (wτp<1w\tau_p<1)일 때는 G, C가 일정하지만, 증가함에 따라 Diffusion에 의한 G는 증가, C는 감소
728x90

+ Recent posts