728x90
1. Expected Value of R.V function

1. Expected Value of R.V function

  • N개 R.V. 함수에 대해서
    • E[X]=xfX(x)dxE[X]=\int xf_X(x)dx
    • R.V. Z=X+Y일 때 E[Z]=(X+Y)fX,Y(x,y)dxdy=E[X]+E[Y]E[Z]=\int^\infty_{-\infty}\int^\infty_{-\infty}(X+Y)f_{X,Y}(x,y)dxdy=E[X]+E[Y]
    • 함수 g(x,y)에 대해 g=EX,Y[g(x,y)]=g(x,y)fX,Y(x,y)dxdy\overline{g}=E_{X,Y}[g(x,y)]=\int^\infty_{-\infty}\int^\infty_{-\infty}g(x,y)f_{X,Y}(x,y)dxdy
    • E[iαiXi]=iαiE[Xi]E[\sum_i\alpha_iX_i]=\sum_i\alpha_iE[X_i]

결합 Moment

  • mnkEX,Y[XnYk]=xnykfX,Y(x,y)dxdym_{nk}\equiv E_{X,Y}[X^nY^k]=\int^\infty_{-\infty}\int^\infty_{-\infty}x^ny^kf_{X,Y}(x,y)dxdy
  • mn0=E[Xn]m_{n0}=E[X^n], m0k=E[Yk]m_{0k}=E[Y^k]
  • n+k = moment의 차수
  • Correlation(상관관계) : RXY=m11=EX,Y[XY]R_{XY}=m_{11}=E_{X,Y}[XY]
    • E[XY]=E[X]E[Y]E[XY]=E[X]E[Y]면 uncorrelated
    • 독립시행이면 uncorrelated
    • correlated면 독립이 아님
    • 하지만 uncorrelated라고 해서 독립인 것은 아님
    • RXY=0R_{XY}=0이면 X와 Y는 직교(orthogonal)한다고 표현

결합 Central Moment

  • μnk=EX,Y[(XX)n(YY)k]\mu_{nk}=E_{X,Y}[(X-\overline{X})^n(Y-\overline{Y})^k]
  • 랜덤변수의 분산 : μ20=σX2\mu_{20}=\sigma_X^2, μ02=σY@\mu_{02}=\sigma_Y^@
  • Covariance : CXY=CYX=μ11C_{XY}=C_{YX}=\mu_{11}
    =E[(XX)(YY)]=E[XY]XY=RXYXY=E[(X-\overline{X})(Y-\overline{Y})]=E[XY]-\overline{XY}=R_{XY}-\overline{XY}
    • CXY=0C_{XY}=0이면 uncorrelated
    • CXY=E[X]E[Y]C_{XY}=-E[X]E[Y]면 orthogonal
    • 상관계수(Correlation Coefficient) : ρ=μ11μ20μ02=CXYσXσY=E[xμxσxyμyσy]\rho=\frac{\mu_{11}}{\sqrt{\mu_{20}\mu_{02}{}}}=\frac{C_{XY}}{\sigma_X\sigma_Y}=E[\frac{x-\mu_x}{\sigma_x}\frac{y-\mu_y}{\sigma_y}]
      • 상관계수의 크기는 항상 1보다 작음
  • 증명 : Cauchy-Schwarz inequality

    f(x)=xμxσxfX,Y(x,y)f(x)=\frac{x-\mu_x}{\sigma_x}f_{X,Y}(x,y), g(y)=yμyσyfX,Y(x,y)g(y)=\frac{y-\mu_y}{\sigma_y}f_{X,Y}(x,y)
    가우스 분포이므로 우변은 1이 됨. 1ρ1\therefore -1\leq|\rho|\leq1

2. Joint Characteristic Function

  • ΦX,Y(w1,w2)=E[ exp[jw1X+jw2Y] ]\Phi_{X,Y}(w_1, w_2)=E[\ exp[jw_1X+jw_2Y]\ ]
    =fX,Y(x,y)exp[jw1X+jw2Y]dxdy=\int^\infty_{-\infty}\int^\infty_{-\infty}f_{X,Y}(x,y)exp[jw_1X+jw_2Y]dxdy
  • inverse Ch. : fX,Y(x,y)=1(2π)2ΦX,Y(w1,w2)exp[(jw1X+jw2Y)]dw1dw2f_{X,Y}(x,y)=\frac{1}{(2\pi)^2}\int^\infty_{-\infty}\int^\infty_{-\infty}\Phi_{X,Y}(w_1,w_2)exp[-(jw_1X+jw_2Y)]dw_1dw_2
  • marginality : ΦX(w)=ΦX,Y(w,0)\Phi_X(w)=\Phi_{X,Y}(w,0)
  • Joint Moment : mn,k=(j)n+kn+kΦX,Y(w1,w2)w1nw2kw1=w2=0m_{n,k}=(-j)^{n+k}\frac{\partial^{n+k}\Phi_{X,Y}(w_1,w_2)}{\partial w_1^n\partial w_2^k}|_{w1=w2=0}

3. Joint Gaussian Random Variable

  • fX(x)=1(2π)n(det)exp[12(Xμ)T1(Xμ)]f_{\it{X}}(x)=\large{\frac{1}{\sqrt{(2\pi)^n(det\sum)}}exp[-\frac{1}{2}(X-\mu)^{T}\sum^{-1}(X-\mu)]}
  • 2차원 Gaussian R.V.에 대해
    • =[σx2ρσxσyρσxσyσy2]\sum=\begin{bmatrix} \sigma_x^2&\rho\sigma_x\sigma_y\\ \rho\sigma_x\sigma_y&\sigma_y^2 \end{bmatrix}
    • 1=11ρ2[1σx2ρσxσyρσxσy1σy2]\sum^{-1}=\frac{1}{1-\rho^2}\begin{bmatrix} \frac{1}{\sigma_x^2}&-\frac{\rho}{\sigma_x\sigma_y}\\ -\frac{\rho}{\sigma_x\sigma_y}&\frac{1}{\sigma_y^2} \end{bmatrix}
    • det=σX2σY2(1ρ2)det\sum=\sigma_X^2\sigma_Y^2(1-\rho^2)
    • fX,Y(x,y)=12πσXσY1ρ2exp[12(1ρ2)[(xμxσX)22ρ(xμxσX)(yμyσY)+(yμyσY)2]]f_{X,Y}(x,y)=\frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}}exp[-\frac{1}{2(1-\rho^2)}[(\frac{x-\mu_x}{\sigma_X})^2-2\rho(\frac{x-\mu_x}{\sigma_X})(\frac{y-\mu_y}{\sigma_Y})+(\frac{y-\mu_y}{\sigma_Y})^2]]

  • property : 2차원 joint gaussian R.V fX,Y(x,y)f_{X,Y}(x,y)
    • XX~N(μx,σX2)N(\mu_x,\sigma_X^2)
    • E[(Xμx)(Yμy)]=ρσXσYE[(X-\mu_x)(Y-\mu_y)]=\rho\sigma_X\sigma Y(Covariance)
    • E[XY]=ρσXσY+μxμyE[XY]=\rho\sigma_X\sigma Y+\mu_x\mu_y
  • X,Y가 joint Gaussian이고 ρ=0\rho=0이면 uncorrelated
  • 임의의 uncorrelated한 gaussian R.V.는 독립
  • 가우시안의 선형 transform, marginal, conditional distribution은 모두 gaussian

  • Linear Transform(Coordination Rotation)
    • 랜덤변수 X, Y를 uncorrelated한 랜덤변수로 선형 변환(각도 θ\theta로 회전)
    • [Y1Y2]\begin{bmatrix} Y_1\\ Y_2 \end{bmatrix}=[cosθsinθsinθcosθ]=\begin{bmatrix} cos\theta&sin\theta\\ sin\theta&cos\theta \end{bmatrix} [XY]\begin{bmatrix} X\\ Y \end{bmatrix}
    • CY1Y2=(σY2sigmaX2)sin2θ2+CXYcos2θC_{Y_1Y_2}=(\sigma_Y^2-sigma_X^2)\frac{sin2\theta}{2}+C_{XY}cos2\theta
      • 위 식이 0일 때 uncorrelated
      • θ=12tan1[2ρσXσYσX2σY2]\theta=\frac{1}{2}tan^{-1}[\frac{2\rho\sigma_X\sigma_ Y}{\sigma_X^2-\sigma_Y^2}]

4. Transformation of Multiple Random Variables

  • N차원 랜덤변수 T : Y=g(X1,X2,....XN)T\ :\ Y=g(X_1,X_2,....X_N)이 있다고 할 때
    • FY(y)=P(g()y)F_Y(y)=P(g()\leq y)
      ...fX1,...,XN(x1,...,xN)dx1...dxN\int...\int f_{X_1,...,X_N}(x_1,...,x_N)dx_1...dx_N
    • fY(y)=dFY(y)dyf_Y(y)=\frac{dF_Y(y)}{dy}
      =fX(x1,...xN)J=f_X(x_1,...x_N)|J|
      • x1=T1(y),...,xN=TN1(y)x_1=T^{-1}(y),...,x_N=T_N^{-1}(y)
      • y=[y1,...yN]Ty=[y_1,...y_N]^T
      • J=[T11y1...T11yN.........TN1y1...TN1yN]J=\begin{bmatrix} \frac{\partial T_1^{-1}}{\partial y_1}&...&\frac{\partial T_1^{-1}}{\partial y_N}\\ ...&...&...\\ \frac{\partial T_N^{-1}}{\partial y_1}&...&\frac{\partial T_N^{-1}}{\partial y_N} \end{bmatrix}
      • J : Jacobian determinant
        • 실수값 p에대해 J가 0이 아니면 함수 f는 역함수가 존재
        • p에서 J의 절대값은 그 점에서의 수축/확산에 대한 정보를 제공

  • ex.{Y1=aX1+bX2Y2=cX1+dX2\begin{cases} Y_1=aX_1+bX_2\\ Y_2=cX_1+dX_2 \end{cases} : [Y1Y2]\begin{bmatrix} Y_1\\ Y_2 \end{bmatrix} =[abcd]=\begin{bmatrix} a&b\\ c&d \end{bmatrix} [X1X2]\begin{bmatrix} X_1\\ X_2 \end{bmatrix}
    • fY1,Y2(y1,y2)=fX1,X2(x1,x2)(x1,x2)(y1,y2)f_{Y_1,Y_2}(y_1,y_2)=f_{X_1,X_2}(x_1,x_2)|\frac{\partial(x_1,x_2)}{\partial(y_1,y_2)}|
      =fX1,X2(x1,x2) / (y1,y2)(x1,x2)=fX1,X2(x1,x2) / [abcd]=f_{X_1,X_2}(x_1,x_2)\ /\ |\frac{\partial(y_1,y_2)}{\partial(x_1,x_2)}|=f_{X_1,X_2}(x_1,x_2)\ /\ |\begin{bmatrix} a&b\\ c&d \end{bmatrix}|
      =1adbcfX1,X2(dy1by2adbc,cy1+ay2adbc)=\frac{1}{|ad-bc|}f_{X_1,X_2}(\frac{dy_1-by_2}{ad-bc},\frac{-cy_1+ay_2}{ad-bc})

5. Estimation

Estimation of Mean

  • 랜덤한 N개 값에서의 sample mean :
    • xN^=1Nn=1Nxn\hat{\overline{x_N}}=\frac{1}{N}\sum^N_{n=1}x_n
  • N개 random variable에서 추정한 sample mean :
    • XN^=1Nn=1NXn\hat{\overline{X_N}}=\frac{1}{N}\sum^N_{n=1}X_n
  • 좋은 Estimate의 조건
    • unbiased : 예측값의 평균이 실제 평균으로 수렴할 것
      • E[XN^]=E[1NXn]=1NE[Xn]=XE[\hat{\overline{X_N}}]=E[\frac{1}{N}\sum X_n]=\frac{1}{N}\sum E[X_n]=\overline{X}
    • 예측값의 분산이 최소값이 될 것
      • E[(XN^X)2]=E[XN^2]X2=σX2NE[(\hat{\overline{X_N}}-\overline{X})^2]=E[\hat{\overline{X_N}}^2]-\overline{X}^2=\frac{\sigma_X^2}{N}
      • sample 개수 N이 충분히 커지면 sample 분산은 0으로 수렴
  • Chebychev's Inequality
    • P(XN^X<ϵ)1σXN^2ϵ2=1σX2Nϵ2P(|\hat{\overline{X_N}}-\overline{X}|<\epsilon)\geq1-\frac{\sigma_{\hat{\overline{X_N}}}^2}{\epsilon^2}=1-\frac{\sigma_X^2}{N\epsilon^2}
    • N이 충분히 큰 상태에서 sample mean과 X의 실제 mean이 같을 확률은 1로 수렴

Estimation of Variance

  • sample variance VN1N(XnXN^)2V_N\equiv\frac{1}{N}\sum(X_n-\hat{\overline{X_N}})^2으로 sample variance를 가정
  • E[VN]=N1NσXE[V_N]=\frac{N-1}{N}\sigma_X이므로 not unbiased
    • 양변에 1N1\frac{1}{N-1}을 곱해 unbiased인 분산의 예측값을 계산 가능
    • σX^2=1N1(XnXN^)2\hat{\sigma_X}^2=\frac{1}{N-1}\sum(X_n-\hat{\overline{X_N}})^2

Law of large numbers

  • weak law : 충분히 큰 N에 대해서 sample mean은 실제 평균과 동일
  • strong law : 충분히 큰 N에 대해서 sample mean이 실제 평균과 동일할 확률이 1로 수렴
728x90

+ Recent posts